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Complex biological functions of biopolymers are due to their
inherent property to adopt specific folded conformations, which

brings about the appropriate spatial arrangement of the functional
groups 3-Peptides have become the subject of active research since
they show distinct folding patterns, including helices, sheets, and

turns analogous to those of-peptidesi™ These experimental
studies together with the theoretical studies by several gféups
have now made it possible for the synthesis of rfeamino acid

monomers with predictable and well-defined secondary templates.

The sugajs-amino acids (SAAs) can be considered as a bridge
between carbohydrates and proteir@ur laboratory has initiated
research activity on the helix-forming tendency of C-linked S&As.
Our previous work has shown that short oligomers built from a
cisfuranoid sugar amino acidcie&-FSAA) can have a high
propensity to form a stable right-handed 14-helix (characterized
by a 14-membered hydrogen bond ring NH CO.43).°

Molecular mechanics calculations carried out in our laboratory
using a conformational space search methéat thetransFSAA
monomer have shown that the angle-&5—Co—C(=0), 6,1
between the two vicinal substituents exists in the range of
90—14C, which is in agreement with the theoretically observed
angle obtained fotransACPC! However, for thecissFSAA, 6 is
restrained in the gauche position and adopts value4éf, which
is in agreement with the value observed incia-ACPC @ =
+30°).12 Due to the pronounced gauche conformer ofdise=SAA
motif, the angle@ in -hGly preferably adopts a conformation
(~60°) usually seen ing3-substituted amino acids. Kessler's
research grouphas reported that a mixed oligomer contairtirzms
SAA andf-hGly generates a mixed 12/10 helix. Fulop et al. have

recently shown that the 14-helical propensity increases with the

chain length, and that 10-helical conformation could coexist at
shorter chains consisting of three or four residifes.
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Figure 1. Normalized CD spectra of—3 (a) and4—6 (b) recorded in
MeOH solution.

nm, respectively, the characteristic signatures that represent a right-
handed 14-heli*¢ Observation of this CD pattern for Boc-ASA
trimer 1 also is rather interesting (Figure 1a). On the other hand,
its SAS analogue! did not exhibit any characteristic secondary
structure, whereas the tetran®eexhibited predominantly a negative
cotton effect with a very weak positive signal, a feature that
represents a 10-heliX. These observations indicate that the Boc-
SA series seem to require a minimum of four residues to nucleate
the helical conformation and more than five residues for a
stabilization of the 14-helix. These studies warrant a detailed
inspection of the helix-forming propensities when the choice of
N-terminus residue is altered in the short oligomers.

NMR spectroscopic studies were undertaken to obtain more

These observations have motivated the synthesis and structurabeta”ed information on the secondary structure&-e6 in CDCl;

characterization of mixed peptidds-6 (Scheme 1) composed of
alternating conformationally rigi¢issFSAA and f-hGly motifs,
which should preferentially form single well-folded secondary
structures. The monomes was synthesized as described previ-
ously? and the monomeA was obtained either by esterification
or by Boc-protection of-alanine amino acid. The heterooligomers
1-6 were synthesized using standard coupling protocols (EDCI/

HOBL).!> The synthesized peptides were characterized by routine

spectral analysis.

Structural investigations of the peptidés6 were carried out
by using CD in methanol. The CD spectralof3 (Figure 1a) and
6 (Figure 1b) exhibit a distinct secondary structural pattern with a

minimum zero crossing and a maximum around 198, 208, and 219
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solution. Two-dimensional NMR signal assignments were estab-
lished using DQFCOSY, TOCSY, and ROESY experiments. The
large dispersions of chemical shifts in amide H-atoms indicate the
presence of a secondary structure. The data showed an increase in
the dispersion of the amide chemical shifts from 1.8 to 2.4 ppm
for 1-3 and5—6, with increase in the chain length. In all of these
peptides, the observed coupling constélat—csn for SAA (<5
Hz) and the two possible couplings f¢hGly (>7.5 Hz and<5
Hz) clearly demonstrate the presence of predominantly a single
conformation around €-Cp (0) ~ 60° for each residue, a
prerequisite for a helix.

Compoundsl—3 and5—6 revealed a majority of the possible
medium and long-range backbone NOEs between-NHCgH; 1,
NH; — CgHi+z and GH; — CgHi+3, which have been assigned
unambiguously and are summarized in Figure 2. However, the
remaining few NOEs could not be assigned due to signal ové&ftlap.

10.1021/ja051014d CCC: $30.25 © 2005 American Chemical Society
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and 5—6 form robust right-handed helical secondary structures
in solution. The design was based on the premise that the
“adaptable rigidifying element” of the five-membered ring of the
cisFSAA motif can only attain gauche conformation about
N—Cp—Ca—C(=0), and other conformations are inaccessible. The
conformational control that is exerted by the motif can be used to
maintain the overall folded conformation and also to modulate the
conformational preferences of adjacent residues. Studies have shown

3 6 that conformationally rigid modified peptides with appropriate
Figure 2. The blue arrowheads represent the observed-NBsHi+2, NH; functional groups and 14-helical fold have medicinal applications,
— CgHits, and GHi — CgHivs NOEs for1-3 and5-6. The overlapped such as disruption of proteirprotein interactiond! Work is in
NH—CsH NOEs are shown by red arrows. progress in this direction.
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